Proving Crypto Implementations Secure

Proot techniques and tools

Manuel Barbosa
HASLab — INESC TEC
Faculty of Science — University of Porto
mbb@dcc.fc.up.pt
http: //www.dcc.fc.up.pt/~mbb

June 2018

Goal of this talk

Overview of different paths to obtain machine-level
implementations provably secure against timing attackers

Selection of approaches which have been reported in the
literature

Closer look at Jasmin

ls formal verification of crypto taking off?

Mozilla Security Blog

13+ Verified cryptograpny for
Hrefox 57

B Benjamin Beurdouche

Traditionally, software is produced in this way: write some code, maybe do some code review,
run unit-tests, and then hope it is correct. Hard experience shows that it is very hard for
programmers to write bug-free software. These bugs are sometimes caught in manual testing,
but many bugs still are exposed to users, and then must be fixed in patches or subsequent
versions. This works for most software, but it's not a great way to write cryptographic software;

users expect and deserve assurances that the code providing security and privacy is well
written and bug free.

ls formal verification of crypto taking off?

=. Microsoft Microsoft 365 Azure Office 365 Dynamics 365 sQL Windows 10 \

Research esearch areas - Products & Downloads Programs & Events -

Project Everest — Verified Secure

Implementations of the HTTPS
CCcosystem

Established: May 31, 2016

ls formal verification of crypto taking off?

L] awslabs / s2n G Watch 183 %

Code (D Issues 121 Pull requests 6 Projects 0 Insights

Join GitHub today

GitHub is hame to over 20 million developers working together to host
and review code, manage projects, and build software together.

N N

Formal Verification of Constant Time Functions #4603

G-l alexw91 opened this issue on Mar 27, 2017 - 1 comment

alexw91 commented on Mar 27, 2017 « edited ~ Member

This issue will track our work on formally verifying during every build of s2n that certain functions are
not susceptible to timing attacks and are indeed constant time:

v 82n_constant_time_equals
7/ s2n_constant_time_copy_or_dont
v §2n HMAC code is not vulnerable to Lucky 13 Timing attack

ls formal verification of crypto taking off?

Research & Development Services News Blog Tech Reports Tech Talks Team Careers

Blog > Part one: Verifying s2n HMAC with SAW

JOEY DODDS | SUNDAY, SEPTEMBER 4, 2016
CRYPTOGRAPHY, DOMAIN SPECIFIC LANGUAGES, FORMAL METHODS

In June 2015, Amazon introduced its s2n library, an open-source TLS library that

SHARE THIS ARTICLE o e ; AN T i
prioritizes simplicity. A stated benefit of this simplicity is ease of auditing and
testing. Galois recently collaborated with Amazon to show that this benefit extends to
verifiability by proving the correctness of s2n’s implementation of the keyed-Hash
Message Authentication Code (HMAC) algorithm. To construct this proof, we used
Galois’s Software Analysis Workbench (SAW). This is the first in a series of three blog
posts (including part two and part three) explaining the project, what we proved, and how

we used SAW to prove it.

Problem statement

Cryptographers write specifications in (very) high-level language
Several specialized tools can be used as entry point for such

specifications

@ EasyCrypt
@ CryptoVerif
o

e Cog
Assume high-assurance that specifications are secure:

@ |deally machine-checked security proof
@ Or paper proof and specification “looks OK”

We want functionally correct CT-secure assembly

Recap

Recall from first lecture we proved AA B = C

@ A: Specification S is secure in the SM
@ B: Implementation P is “valid” with respect to S
@ (C: Implementation P is secure in the |IM

We sketched a methodology to get implementation security:

@ Cryptographers take care of A
@ We want C: security as in A plus no timing attacks

@ It suffices to generate P from S such that

e P is functionally correct
o P is constant-time (CT) secure

Let us look at how this can be done in practice

s there a simple solution?

Recall our goal:

@ Go from provably secure crypto specification
@ [o secure and timing-attack resilient machine code

Why doesn’'t someone write a compiler to do this?
Harder than it looks.

Next: various efforts in this direction.

How much do we trust compilers?
Compilers designed and trusted to preserve functionality

Not designed to be aware of timing side-channels

Good tools exist to enforce constant-time at LLVM-level

o Flow Tracker
o CT-verif (details later)

This is a good solution if we trust clang

@ to preserve functionality from C to assembly
@ to preserve CT-security from LLVM to assembly

How to get functionally correct C code?

@ Trust some compiler to produce C from crypto spec
@ We will see some examples below

10

What if we don't trust compilers?

The CompCert compiler [Ler06] is a milestone in formal
verification

It is able to produce efficient assembly code from C
It is proven correct in Coq

It has very good coverage of ANSI| C

Efficiency is comparable to GCC -0O1

Extensions to CompCert to handle intrinsics are subject of
ongoing work

11

ls CompCert enough?

CompCert is not proven to preserve constant-time

Almeida et al [CCS'12] gave an extension for CompCert

@ If source code is PC-model secure (might not be
constant-time due to memory accesses)

@ Then assembly code is PC-model secure

@ Uses translation validation

@ (Caveats: does not easily generalise to full CT security

Barthe et al [CCS'14| gave an extension for CompCert

@ Includes type-based CT verifier at pre-assembly level
@ Successful compilation implies non-interference
@ (Caveats: limited coverage and precision

Still need to find a way to generate correct C code

12

Back to approaches and challenges

Next we will see how various works in the literature are tackling
these challenges

We broadly categorize efforts in three classes:

@ Code extraction
@ Certified compilation
@ Direct low-level proofs

Clarify what is being trusted to do what.

13

Approach 1: Code extraction

EasyCrypt, Cryptoverif and F* support code extraction from
high-level specification to functional language

@ EasyCrypt and CryptoVerif to OCam|
@ F* to F# or OCaml

Advantages:

@ Specifications are written in functional operator language
@ Extraction is essentially the identity function

@ Compilers to C exist, so all done if we trust compilers

@ Example: Yao's protocol by Almeida et al. [CCS'17]

Limitations:

@ Need to trust compilers
@ [he generated assembly code is relatively slow

14

Approach 2: Certified compilation

Several works use CompCert to go from C to assembly

They vary in how one obtains a correct C implementation

Common pattern:

@ Refine specification, e.g, interactive theorem proving until

it can be used as a specification (Hoare tripple) in C
axiomatic semantics

@ Example: specification uses integers and is proven

equivalent to another specification using word-level
representation.

@ Prove C code satisfies the refined specification using the C

axiomatic semantics (many options here, including gfverif,
Frama-C, F*)

15

Approach 2: Certified compilation

Instantiations:

@ Almeida et al. [CCS'13|: Use EasyCrypt to refine
RSA-OAEP specification and Frama-C to prove C
implementation correct; mapping of EasyCrypt logic to
axiomatic semantics is trusted

@ Zinzindohoué et al [CCS'17] use F* to refine functional
specification of NaCl and also to prove C-like imperative
form correct: extraction to C is trusted

@ Appel et al [Usenix'15, CCS'17] Use “Verifiable C" within
Coq to do all the steps for HMAC and HMAC-DBRG.

16

Approach 2: Certified compilation

Advantages:

@ No trust in compilers
@ Code can be faster than what is obtained from extraction

Limitations:

@ A lot of human effort involved compared to extraction

@ No guarantee that compilation will preserve CT-security

(unclear what one can do with tools like ct-verif and
Flow Tracker)

@ Poor support to directly CT-verify assembly code

17

Technology summary for approaches #1 and #2

We have great tools for automatic

e CT-verification at pre-assembly level (LLVM)
@ Generation of certified assembly code from C (CompCert)

If we trust compilers, then good solutions exist.

If we don't trust compilers we lack automatic tools to prove:

@ C implementations functionally correct
@ Certified assembly-level code CT-secure

Current limitations:

@ Functional correctness proofs are very hard even at C level
@ Existing C compilers, even certified ones, are not proven to

preserve CT-security
@ Certified pre-assembly level CT-security checkers have poor

coverage/precision
18

Approach 3: Direct low-level proof

Emerging approach to obtain both CT-security and functional
correctness verification at low level

e Carry out all verification at (pre-)assembly level

@ Effort involved in functional correctness proofs comparable
to that required at C level

@ (Constant-time verification performed close to machine level

@ Preliminary work demonstrated feasibility

cf. Chen et al [CCS'14]

@ Two recently proposed platforms go in this direction: Vale
and Jasmin

This approach will be covered in the rest of the talk

19

Approach 3: Direct low-level

Vale [Usenix'17] is a tool that permits directly verifying
assembly code

Annotated assembly code is translated to Dafny

Dafny is a general purpose verification language

Assembly semantics are written as Dafny code

Dafny then works as a VCGen relying on Z3

e 6 6 ¢ ¢

CT-verification is performed using data-flow analysis

20

Approach 3: Direct low-level

Jasmin [CCS'17] is a framework for writing low-level high-speed
cryptographic code

@ New language inspired in ghasm, but with some additional
high-level features

@ Full programmer control, but functional verification made
simpler by high-level constructs

@ Certified compiler guaranteed to preserve functionality and
CT-security

@ ct-verif style verifier at source level provides full power of
self-composition

21

Part 3: Short Introduction to Jasmin
Implementing crypto requires a subtle equilibrium

@ Correct
@ Fast

@ Secure (side-channel free)

This shows gap between C and assembly

Programmers like C

@ Portable
@ Convenient software-engineering abstractions
@ Readable, maintainable

Often they end up programming in assembly

@ Efficiency
@ Control (instruction selection and scheduling)
@ Precise semantics

22

What is Jasmin?

A language

@ with a familiar syntax
@ seemingly high-level constructs
@ allows for “assembly in the head” programming

A formal semantics
A predictable compiler proven correct in Cog

Tooling for proofs of safety, correctness and CT-security

23

Jasmin team

https://github.com/jasmin-lang/jasmin
José Bacelar Almeida

Manuel Barbosa

Gilles Barthe
Arthur Blot
Benjamin Grégoire
Vincent Laporte
Tiago Oliveira
Hugo Pacheco
Benedikt Schmidt

Pierre-Yves Strub

24

Jasmin “Hello World!” (constant-time swapping)

param int n = 4;

inline
fn cswap(stack ub4|[n] x, stack u64[n] y, reg u64 swap)
— stack u64[n], stack u64[n] {
reg ub4 tmpl, tmp2, mask;
inline int i;
mask = swap * OxfFFFHFFFFEF;
fori =0ton {
tmpl = x|i];
tmpl “= y[i;
tmpl &= mask;
tmp2 = x]i;
tmp2 T= tmpl;
x[i] = tmp2;
tmp2 = yl[il;
tmp2 = tmpl;
y[i] = tmp2;

}

return X, y;

/ero-cost abstractions

Variable names
Global parameters
Arrays

Loops

Inline functions
(with custom
calling
conventions)

25

Control down to architecture level

reg bool cf;
reg ub4 addtO, addtl, t10, t11, t12, t13;
t10 = [workp + 4 * 8];
t1l = [workp + 5 * 8]J;
t12 = [workp + 6 * 8]
t13 = [workp + 7 * 8];
//

t10 += [workp + 8 * 8];
cf, t11l += [workp + 9 * 8| + cf;
cf, t12 += [workp + 10 * 8] + cf;
cf, t13 4+= [workp + 11 * 8] + cf;
addtO0 = 0;
addtl = 38:
addtl = addtO if ! cf;

@ Direct memory access

@ The carry tlag is an ordinary
boolean variable

reg ub4 i, j;

stack ub4 is, js;

] = 62;

| = 3¢

while (i >=s 0) {

}

S_I

/] -
whlle (j >=s0){

S__],

/] -

J—JSJ-—l

}
j=63 i=is i-=1;

@ Control over loop unrolling

@ Control over spilling

26

Beyond correctness

Automatic proof of memory safety

@ T[ranslate to Dafny
@ Reuse the Dafny - Boogie infrastructure

Automatic proof of constant-time

@ [ranslate to Dafny then Boogie
@ Adapt the technique from the CT-verif tool
@ Build a product program and check that the product is safe

Jasmin for secure programming

@ Infrastructure for automatic checks

@ The compiler preserves functional correctness, CT
@ Known verification techniques apply to Jasmin programs

27

Running Jasmin programs

Jasmin programs as libraries

@ Compliant with standard ABI

@ Link with your own programs
written in assembly, C, OCaml, Rust. ..

28

